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Concept

Estimating best values

General case

Perturbed-parameter calculations with the GEF code provide event-wise multivariate distributions
of fission yields. They represent the fission yields and their correlations given by the physics of the
model.  From these,  covariance  matrices  are  determined.  (The  diagonal  elements  represent  the
variances of the calculated yields.) In the present version of GEF, complete covariance matrices of
element (Z) yields and post-neutron fission-fragment mass (A) yields and nuclide (A,Z) yields are
available. Eventually, the output may be extended to covariance matrices of cumulative yields.

From any covariance matrix  Kmodel, the corresponding analytical multivariate distribution  fmodel can
be determined:
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This multivariate distribution expresses the probability distribution that the values y are compatible
with the result  of  the model.  (y is  the vector  of  yields  (as a  variable),  my is  the vector  of the
corresponding mean values of the model yields.)

The term ( y−my )
t Kmodel

−1
( y−my ) is the square of the so-called Mahalanobis distance 

[https://en.wikipedia.org/wiki/Mahalanobis_distance, http://www.real-statistics.com/multivariate-
statistics/multivariate-normal-distribution/multivariate-normal-distribution-basic-concepts/]. The 
Mahalanobis distance is a multi-dimensional generalization of the idea of measuring how many 
standard deviations away a point P(yi,yj) is from the mean of the distribution f model .

From the distribution fmodel, the following log-likelihood function Lmodel is defined 1:
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When measured values yexp of the observables y with their individual uncertainties si are available,
they define an experimental multivariate distribution:
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and the corresponding log-likelihood function:

1 Pre-exponential terms are neglected in definitions of this and the other log-likelihood functions.
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In case the experiment also provides covariances, the experimental multivariate distribution reads:
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with the corresponding log-likelihood function:
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The “best guess” of yield values, considering the constraints by the model and the experiment, are
given by maximising the value of the common log-likelihood function

L=Lmodel+Lexp                                                        (7)

with respect to the y values. 

In order to allow for more flexibility, 3 weighting factors, Wabs, Wcorr and Wexp are introduced:

L=W abs⋅Lmodel
diagonal

+W corr⋅Lmodel
non−diagonal

+W exp⋅Lexp                                   (8)

( Lmodel
diagonal includes  only the diagonal  elements  and Lmodel

non−diagonal includes  only the  non-diagonal

elements of Kmodel
−1 .)

This  should  allow,  for  example,  to  reduce  the  influence  of  the  absolute  values  of  the  model
calculation by choosing a value Wabs < 1. 

2-dimensional case

For illustration, some equations are explicitly given for the 2-dimensional case.
The analytical multivariate distribution is:
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The two yields are denoted by  x and  y, their mean values by  μx and  μy, their standard deviations
(square root of the variances) by σx and σy, and the correlation coefficient between the variables x
and y is given by ρxy . The correlation coefficient ρxy is related to the covariance covxy by
 

cov xy=ρxy⋅σ x⋅σ y                                                        (10).

The corresponding log-likelihood function is:
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Alternative approach

The above described approach requires the inversion of the covariance matrix. In the case of a large
number of dimensions, this is a time-consuming calculation that can be complicated by problems of
numerical instability. In order to circumvent these difficulties, an alternative procedure has been
developed that is particularly aimed for the case that only the correlations of the model calculations
are considered and their absolute values are disregarded.

The approach is based on the geometrical properties of the multivariate distribution of the model
results.

The contour lines of a multivariate distribution, projected on the 2-dimensional surface spanned by
the coordinates x and y, is shown in figure 1. The (x - μx) and (y - μy) values are normalized to the
corresponding standard deviations σx and σy. The values of x and y have a positive correlation. Their
iso-contour lines are ellipses with an axis ratio ≠ 0. (A value of 2 is chosen in this example). The
longer axis of the ellipses has an angle of 45% with respect to the x axis (counter clock wise). When
the two variables have a negative correlation, the longer axis of the iso-contour lines has an angle of
-45% with respect to the x axis (counter clock wise). 

Figure 1: Iso-contour lines of a normalised two-dimensional multivarite Gaussian distribution with
positive correlation.  Heights of the contour lines are shown in steps of 0.1 times the maximum
value.

The probabilities along the axes of the ellipses (iso-contour lines) of figure 1 under 45° along the
line (x – μx)/σx = (y –  μy)/σy and under -45° along the line (x – μx)/σx = - (y –  μy)/σy are shown in
figure 2. The ratio of the two curves represents the relative decrease of probability at any point due
to its distance r = (x – μx)/σx - (y – μy)/σy from the optimum correlation line (x – μx)/σx = (y – μy)/σy

for any fixed value of (x – μx)/σx + (y – μy)/σy .

The deviation between the two curves (in and perpendicular to the correlation direction) increases if



the correlation between the variables x and y becomes stronger. They coincide if the variables are
uncorrelated. 

Figure 2: Probabilities of the multivariate distribution shown in figure 1 along the lines in and
perpendicular to the correlation direction. The ratio of the two curves is shown in addition. 

Figure  3  shows the  corresponding  term for  the  example  given  in  figures  1  and  2  in  the  log-
likelihood function as a function of  r = (x – μx)/σx - (y – μy)/σy . In the present case of a Gaussian
multivariate distribution, this is a parabola. 

Figure 3: Log-likelihood function Lxy(r) that expresses the likelihood as a function of  r = (x – μx)/σx

- (y – μy)/σy  due to a deviation from the optimum correlation of the two variables x and y for the
example shown in figure 1.

According to these ideas, the correlation between any pair of calculated fission-fragment yields  x
and y is expressed by the term

Lxy=−A (ρxy )⋅((x−μx)/σ x−( y−μy )/σ y )
2 .                                (12)



The term Lmodel
non−diagonal  of the log-likelihood function in equation(8) is replaced by the sum over all

Lxy with x≠ y . 

The value of  A(ρxy) is zero when  x and  y are uncorrelated, and it grows monotonically with the
magnitude of the correlation coefficient  ρxy.  Figure 4 shows the function  A(ρ) from a numerical
calculation and the  function A (ρ)=0.27⋅ρ/(1−ρ) that is implemented in the MATCH code. 

Figure  4: The  function  A(ρ)  (defined  in  the  text)  from  a  numerical  calculation  (red  line)  in
comparison with the function A (ρ)=0.27⋅ρ/(1−ρ) (dashed blue line). 

Including different classes of observables

In an evaluation process, all experimental information should be used. Thus, the information from
measured Z yields, nuclide yields and eventually cumulative yields must be combined. This is easily
possible  by  constructing  a  vector  y that  contains  all  classes  of  available  observables.  The
corresponding covariance matrix contains the covariances between all observables, including the
covariances  between  observables  of  different  classes.  Then,  the  same  procedure  is  applied  as
described above.

Estimating uncertainties and covariances

The combined log-likelihood function L defines the corresponding multivariate distribution

f =c⋅exp (L) .                                                               (??)

The constant c is determined by the normalization condition ∫ f d y=1 .
From this combined multivariate distribution, the corresponding covariance matrix may be deduced
by a suitable analytical or numerical method.

The calculation of uncertainties is still under development.



Practical considerations

Availability of experimental covariances

Experimental values are not only subject to uncertainties, but in most cases they are also more or
less correlated, even if the covariances are not given. If only the uncertainties of the experimental
values  are  included in  the  above procedure,  and the  correlations  are  disregarded,  the  different
experimental  values  are  considered  to  provide  independent  information.  In  this  case,  the
correlations provided by the model calculations lead to unrealistically small uncertainties of the
evaluated  values.  Therefore,  it  is  important  to  include  realistic  correlations  (respectively
covariances)  of  the  measured  results  into  the  evaluation  procedure.  This  is  a  problem,  if
experimental covariances are not available. 

If  the  experimental  correlations  are  not  available  and  they  cannot  be  estimated,  a  possible
conservative solution may be to increase the experimental uncertainties that enter into the above
described procedure in a way that the final uncertainties of the results of this procedure are always
equal or larger than the nominal experimental uncertainties. 

Example

In figures 5 and 6, the result of the GEF code and the result of the MATCH code with different
options are compared with the available experimental post-neutron mass distribution for the fission
of 241Pu, induced by fast neutrons. For the calculation, a neutron energy of 2.5 MeV was assumed.

Figure 5: Adjustment of the fission-fragment mass yields from GEF (red stars) to evaluated data
from ENDF/B-VII  (black  full  dots,  connected  by a line)  with  the MATCH code for  the  system
241Pu(n,f), En = 2.5 MeV. The experimental data [1] are rather incomplete. The blue open symbols
show sets  of  fission yields that  maximise the likelihood function of the measured data and the
covariances from GEF. The full  green symbols show the result  of  another calculation with the
relative weight of the experimental data increased by a factor of 5.



Figure 6: Like figure 5, but with logarithmic vertical scale.

The figures show that the MATCH code finds a compromise between the measured values and the
result  of the GEF model.  An increased weight  of the experimental  data shifts  the result  of the
MATCH code closer to the data, in particular to those with smaller error bars. The fact that the GEF
result only enters by the covariances leads to a consistent shift of neighbouring points which have a
high degree of correlation. For example, the green points are shifted down in the whole region
around  symmetry  between  A =  110  and  A =  130  compared  to  the  GEF result,  because  GEF
overestimates the yields in the lower wing of the heavy peak between A = 126 and A = 130. 
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