General description of fission observables: The GEF code*

Karl-Heinz Schmidt, Beatriz Jurado, Christelle Schmitt

ND2016

International Conference on Nuclear Data for Science and Technology Sept. 11-16, 2016, Bruges, Belgium

Invited plenary talk

*) Work supported by the Nuclear-Energy Agency of the OECD

Different approaches for modeling fission

↑ fundamental

- Fully microscopic, self-consistent models
- Stochastic models (Langevin equations)
- Semi-empirical description of the properties and processes of the fissioning system (GEF)
- Empirical parametrization of the fission observables (Wahl, Katakura, ...)
 - ↓ parametrization

GEF compared to direct parametrization of observables

GEF

- 1. Rigid theoretical frame
 - Universal fragment shells
 - Topographic theorem
 - Energy sorting, etc.
- 2. Global description of all systems, E*, spin
- 3. All fission quantities and observables
- 4. Each fission quantity correlates with all others
- 5. Multi-chance fission

Empirical parametrization

1. No theoretical input

- 2. Separate description of individual systems
- 3. Only specific observables
- 4. Separate description of different observables
- 5. Lumped observables

Theoretical ideas exploited in GEF

- "Structure of the potential energy surface at large deformations" (Early manifestation of fragment shells), U. Mosel, D. Scharnweber, Phys. Rev. Lett. 25 (1970) 678
- "Theory of macroscopic fission dynamics" (Dynamical freezing), G. D. Adeev, V. V. Pashkevich, Nucl. Phys. A 502 (1989) 405
- "Nuclear properties according to the Thomas-Fermi model" (Topographic theorem), W. D. Myers, W. J. Swiatecki, Nucl. Phys. A 601 (1996) 141

Specific theoretical developments for GEF

- "Assessment of saddle-point-mass predictions for astrophysical applications", A Kelic, K.-H. Schmidt, Phys. Lett. B 634 (2006) 362
- "On the topographical properties of fission barriers", A. V. Karpov, A. Kelic, K.-H. Schmidt, J. Phys. G: Nucl. Part. Phys. 35 (2008) 035104
- "Experimental evidence for the separability of compound-nucleus and fragment properties in fission", K.-H. Schmidt, A. Kelic, M. V. Ricciardi, Europh. Lett. 83 (2008) 32001
- "Entropy-driven excitation-energy sorting in superfluid fission dynamics", K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104 (2010) 212501
- "Thermodynamics of nuclei in thermal contact", K.-H. Schmidt, B. Jurado, Phys. Rev. C 83 (2011) 014607
- "Final excitation energy of fission fragments", K.-H. Schmidt, B. Jurado, Phys. Rev. C 83 (2011) 061601(R)
- "Inconsistencies in the description of pairing effects in nuclear level densities", K.-H. Schmidt, B. Jurado, Phys. Rev. C 86 (2012) 044322
- "General laws of quantum and statistical mechanics governing fission", K.-H. Schmidt, B. Jurado, FIAS Interdisciplinary Science Series (2014) 121
- "Influence of complete energy sorting on the characteristics of the odd-even effect in fission-fragment element distributions", B. Jurado, K.-H. Schmidt, J. Phys. G 42 (2015) 055101
- "Revealing hidden regularities with a general approach to fission", K.-H. Schmidt, B. Jurado, Eur. Phys. J. A 51 (2015) 176

Structure of the GEF model code

Input:

- n-induced fission: En, target
 - Pre-equilibrium
 - Multi-chance

or

• Z, A, E*, I of CN

<u>Output</u>:

- Z1, A1, Z2, A2,, I1,I2, pre-and post-neutron, isomeric ratios, TKE, prompt neutrons and gammas
- Event generator, covariances, ENDF files, random files

Application range of GEF

All systems (spontaneous fission up to E*=100 MeV) with a unique parameter set, \approx 30 to 50 parameters relevant for FY.

Physics of GEF: Potential-energy surface macro-microscopic approach

Macroscopic potential

Full potential

A. V. Karpov, A. Kelic, K.-H. Schmidt J. Phys. G: Nucl. Part. Phys. 35 (2008) 035104

Early influence of fragment shells

Neutron shell-model states in 2-center shell model (U. Mosel, H. W. Schmitt, Nucl. Phys. A 165 (1971) 73)

- Single-particle levels near second barrier resemble those of separated fragments.
- Quantum-mechanical effect of necked-in shape.

Physics of GEF: Separability of (CN) macroscopic potential and (fragment) shells

Statistical population of quantum oscillators in asymmetry: Yield and shape of fission channels

Empirical parameters of fragment shells

Fission channels:

- Standard 1,
- Standard 2,
- Superasymmetric

Parameters:

- Depth (universal)
- Width (universal)
- Position

 (systematics, constant in Z,
 ← see figure)

Böckstiegel et al., 2008

Variation by macroscopic potential

- Symmetric fission channel: Favoured by macroscopic Pot.
- Asymmetric fission channels: Created by shells.

The position of symmetry (in A, N, Z) shifts with respect to the shells of the fission modes.

 \rightarrow Main reason for changing mass distributions.

Quality of mass yields from GEF

Chi-squared deviations per system

Excerpt from K.-H. Schmidt et al., Nucl. Data Sheets 131 (2016) 107

Almost all large deviations caused by erroneous evaluation (evidenced by GEF)!

The "normal" case 233U(nth,f)

- Chi-squared around 1.
- Most model uncertainties smaller than exp. errors.
- No indication for erroneous data.

The case 235U(nth,f)

- Many precise experimental data.
- Some model uncertainties are larger than the experimental ones.
- Only few deviations are larger than the exp. error bars (experimental problem with Y(A=129)???)

The problematic case 237Np(nth,f)

 Erroneous data due to target contaminant are easily detected (probably 15 ppm 239Pu).

237Np(nth,f), the contributions

Also noticeable in the prompt-fission multiplicity.

Error in evaluation (ENDF/B-7)

Prompt-neutron multiplicity almost zero: far from expected value (4.9).

Full nuclide distributions

Pre-neutron: Influence of charge polarization

Prompt neutron emission

Contributions from different components at scission:

Intrinsic excitation energy (-> energy sorting) Collective excitations (-> about equal parts) Deformation (-> structural effects, responsible for the saw-tooth shape)

Fragment deformation \rightarrow **prompt neutrons**

Naqvi et al, 1986 / Zeynalova et al., 2012

Wilkins et al., Phys. Rev. C 14 (1976) 1832

General systematics of deformed shells: Correlation particle number ↔ deformation (Additional influence of mac. potential.) Saw-tooth behaviour reflects fragment deformation at scission.

New results on level densities suggests energy sorting in fission

Nascent fragments:

Two thermostats in contact.

→ Energy sorting

Schmidt, Jurado, PRL 104 (2010) 212501

Guttormsen et al. 2012

Constant nuclear temperature at low E*.

nu-bar

rms deviation: 0.1 units

rms deviation: 0.2 units

(experimental problems?)

Energy spectra of prompt neutrons

Clue: Modified composite Gilbert-Cameron nuclear level density. (Increased condensation energy, collective enhancement) K.-H. Schmidt, B. Jurado, Phys. Rev. C 86 (2012) 044322

Energy spectra of prompt gammas

Influence of neutron emission

Influence of asymmetry on even-odd effect

K.-H. Schmidt et al., Nucl. Phys. A 665 (2000) 22_

GSI-experiment: Z distribution measured over the whole range.

Caamano et al., JPG 38 (2011) 035101

Systematics:

Even-odd effect strongly enhanced in asymmetric splits.

→ even-even light fragments = end products of energy sorting

B. Jurado, K.-H. Schmidt, J. Phys. G: Nucl. Part. Phys. 42 (2015) 055101

Isobaric sequences

Influence of charge polarization at scission and prompt-neutron emission.

Even-odd effect in ff neutron number

Even-odd effect in neutron number of fragments (post-neutron) is created by evaporation. (Does not depend on E*!) By influence of pairing on binding energies and level densities:

M. V. Ricciardi et al., Nucl. Phys. A 733 (2004) 299

Multi-chance fission

250Cf, E* = 45 MeV VAMOS experiment

GEF: Contribution of fission chances

GEF: The final FF distribution is the sum of the different fission chances.

Fragment angular momentum

GEF calculations

in good agreement with measured isomeric ratios

Theory: "Pumping" from q.m. uncertainty of orbital angular momentum (Kadmensky) + I of unpaired nucleons.

Fragment angular momentum

- stores collective energy at scission (less TKE)
- feeds contributions of rotational transitions to prompt gamma spectrum

Uncertainties of the model

Mass yields from GEF with estimated uncertainties.

GEF calculations with perturbed parameters.

Covariances from GEF

Correlations or covariances available for any pair of fission observables or between the fission quantities of different systems

Summary

- GEF: Description of the fission process on an "intermediate" level with a rigid theoretical frame and empirical parameters.
- High precision, good predictive power over a large range of nuclei.
- Fast code (10⁶ events in \approx 1 minute).
- Freely available, open source.
- Suited to detect erroneous data (validation).
- Covariances, ENDF tables of FY, random files provided.
- See more complete presentation of the GEF code in: "General description of fission observables: GEF model code", K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131 (2016) 107.