Peculiar quantal and statistical effects in nuclear fission

Karl-Heinz Schmidt

Subatech, March 2018

Some orientation

This talk is not specific about nuclear fission, but the fission process provides specific conditions for the observation of the peculiar effects, I will speak about.

What we have to know about fission

- In the fission process, a heavy nucleus escapes from the minimum in its metastable compact (ground) state and evolves to a dinuclear system (2 nascent fragments connected by a neck), before it fissions.
- The velocities of the nascent fragments before scission are low (much lower than the Fermi velocity).

- Fission-fragments (Z,A,Ekin),
- Neutrons emitted from the fragments (number, energies)
- Gammas emitted from the fragments (number, energies)

Nu-bar over Apre

Saw-tooth behaviour is understood (deformation energy due to shell effects near scission):

- Mass yields from GEF,
- nu-bar from Naqvi et al., PRC 34 (1986) 218

Neutron shells on N-beta plain from Wilkins et al., PRC 14 (1976) 1832

Even-odd staggering in Z

Figure from Bocquet et al., Nucl. Phys. A 502 (1989) 213

Neighbouring system: 235U(nth,f)

Shows that excitation energy at scission is low (in the range of pairing correlations, < 10 MeV).

Nu-bar over Apre

- Mass yields from GEF,
- nu-bar from Naqvi et al., PRC 34 (1986) 218

 $E_n = 0.8 \text{ MeV}$ $E_n = 5.5 \text{ MeV}$

- Mass yields are similar.
- More neutrons from the heavy fragment.
- Additional initial energy (from 0.80 to 5.55 MeV) appears in the heavy fragment, only!
- Why?

1. attempt to understand: Independent-particle picture + thermal equilibrium

Two nascent fragments in contact, before scission.

- Fermi-gas level density:
 ρ = exp (2 sqrt(a E))
 T = sqrt(E/a)
 a = A/8 (or A/10)
- Thermal equilibrium: T1 = T2E = $T^2 A/8$ E1 / E2 = A1 / A2
- \rightarrow In conflict with data.

What about residual interactions in nuclei?

- Signatures of residual interactions:
 - Even-odd staggering in binding energies (from pairing correlations).
 Increase of the nuclear binding energy.
 - Wigner (congruence) energy, kink in masses at N=Z (from proton-neutron interactions).
 Increase of the nuclear binding energy, when neutrons and protons occupy the same orbits.
- Both effects change during fission.
 - Even-odd staggering ~ 1/sqrt(A) (increases by $\sqrt{2}$)
 - Wigner energy ~ ? |N-Z|/A (doubles)
- Independent-particle picture is not realistic.
 - How do residual interactions influence the level density?

Experimental level densities

Figure from Guttormsen et al., Eur. Phys. J. A 51 (2015) 170

- Constant inverse logarithmic slope (temperature) up to ≈ 10 MeV.
- $T \sim A^{-2/3}$ plus some additional influence of shell effects.
- Origin: Phase transition from superfluid to Fermi gas.

What does theory say?

- BCS calculation (Moretto 1972) (and others) shows the tendency to a constant temperature below the critical pairing energy.
- Moretto et al. (J. Phys. Conf. S. 580 (2015) 012048) obtains T = const., also with BCS, like Gilbert Cameron.
- How behave level densities from microscopic models?

Proposed level-density description

Composite: Const T. + Fermi gas (matching energy higher than in Gilbert-Cameron formula)

 $U = E^* - 2 \Delta$

Jurado, Schmidt, J. Phys. G: Nucl. Part. Phys. 42 (2015) 055101

How much does the neck disturb the properties of the fragments?

- Single-particle energies in a dinuclear potential (Mosel and Schmitt, NPA 165 (1971) 73).
- In necked-in shape, the singleparticle levels resemble those in the separate fragments.
- Fragment properties are not much disturbed by the neck.
- Fragments have their individual temperatures well before scission.
- There is time for thermal equilibration.

Thermodynamical considerations

- The coupling by the neck leads to flow of thermal energy from the hotter (smaller) to the colder (heavier) fragment. (Process like in former ice creme machines!)
- Thermal equilibrium T1 = T2 cannot be reached. → Energy sorting.
- Consistent with the data.

Peculiar system of coupled microscopic thermostates

Microscopic view on energy transfer

Transfer of nucleons through the neck transports energy (heat) due to the different occupation functions.

This mechanism is included in the Window Formula: Window formula of one-body dissipation for zero relative velocity! D. H. E. Gross NPA 240 (1975) 472

Final result: Statistical model

$$\frac{dN}{dE_1} \propto \rho_1(E_1) \cdot \rho_2(E_{tot} - E_1)$$

$$\rho_{\rm CT}(E) = \frac{1}{T} e^{(E - E_0)/T} \quad *)$$

Division of energy determined by the number N of available states.

Schmidt, Jurado, PRC 83 (2011) 061601

Influence of shell effects

Can shell effects invert the energy sorting?

Level density:

$$\rho_{\rm CT}(E) = \frac{1}{T} e^{(E - E_0)/T}$$

Influence of mass A and shell effect S:

 $T_k = A^{-2/3} / (0.0570 + 0.00193S'_k)$

(v.Egidy, Bucurescu, PRC 80 (2009) 054310)

Very strong shells (at scission!) are needed to invert the energy sorting, except very close to symmetry.

Practical importance

With increasing initial E*:

- Shift of isotopic distributions by prompt neutron emission only in the heavy fragment group!
- Light fragment yields stay essentially the same.

(Evidenced by still unpublished results of the SOFIA experiment by J. Taieb et al. at GSI.)

Behaviour at higher E*

E* > Ecrit:

- Continuation of energy sorting!
- Influence of other residual interactions (phase transitions)? (Congruence energy?)

Complicated by

Multi-chance fission

Challenge for theoretical understanding

Summary

- Measured level densities reveal constant nuclear temperatures in the pairing regime.
- The nascent fragments before scission form a very peculiar and rather unique system of microscopic thermostates with curious properties.
- Experimental data that remained unexplained for long are attributed to a process of energy sorting in fission (K.-H. Schmidt, B. Jurado, Phys. Rev. Lett. 104 (2010) 212501).
- The energy sorting is driven by entropy, Maxwell's demon is not in play.
- The phenomenon is implemented in the GEF model code (K.-H. Schmidt, B. Jurado, Ch. Amouroux, Ch. Schmitt, Nucl. Data Sheets 131 (2016) 107) www.khs-erzhausen.de